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We show that Markov couplings can be used to improve the accuracy of Markov chain
Monte Carlo calculations in some situations where the steady-state probability distribution
is not explicitly known. The technique generalizes the notion of control variates from clas-
sical Monte Carlo integration. We illustrate it using two models of nonequilibrium
transport.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms generate samples from a probability distribution by simulating a Markov
chain that leaves the distribution invariant. One estimates expected values by time averaging over long simulations [12,20].
For high-accuracy Monte Carlo computations, variance reduction methods are crucial. Unfortunately, some variance reduc-
tion methods are hard to apply in MCMC, particularly when there is no explicit expression for the steady-state probability
distribution of the Markov chain.

In this paper, we demonstrate a technique for MCMC variance reduction which can improve accuracy by factors of up to 2
or more in certain situations where an approximate steady-state distribution is known. The technique, which we call coupling
control variates, builds on earlier work using Markov couplings in MCMC [6,17,19,22]. Specifically, we assume that we can
obtain an explicit approximation of the steady-state distribution, and that the expected values of this approximate distribu-
tion are known. The basic idea is to find a second Markov process which (i) leaves the approximate distribution invariant,
and (ii) ‘‘shadows” (i.e., closely follows) the original Markov process. The expectations of the approximate distribution then
provide an initial ‘‘guess,” which we correct by simulating the two ‘‘coupled” processes to estimate the difference (in
expected values) between the true steady-state distribution and our approximate distribution.

We apply the technique to certain lattice models from statistical physics, in which the steady-state probability distribu-
tion is approximately a product of local distributions when the system is out of equilibrium.1 These systems are of interest in
the theory of transport processes such as heat conduction. In this paper, we consider models consisting of a linear chain of
. All rights reserved.
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lattice sites coupled to ‘‘heat baths” at each end; each bath is characterized by thermodynamic parameter(s) like temperature,
chemical potential, etc. The steady-state probability distribution is a Gibbs–Boltzmann distribution if the bath parameters are
equal. This is not the case for unequal heat baths. However, a large lattice out of equilibrium may still have a steady-state dis-
tribution that is locally in equilibrium, e.g., for heat flow, the statistics at a given location is approximately governed by a Gibbs–
Boltzmann distribution with a local temperature (see Section 3 for details). We will show how such ‘‘local equilibrium” distri-
butions can be used to achieve variance reduction.

We note that similar ideas have appeared in the operations research literature [7,9,23]; a difference here is our use of the
Metropolis-Hastings algorithm to construct ‘‘external control variates” from given Markov couplings. Related ideas have also
been used in molecular dynamics simulations, in the form of ‘‘shadow hybrid Monte Carlo” [10]. Finally, we point out that
Markov couplings have been used in a quite different way to perform exact Monte Carlo sampling [18].

2. Coupling control variates

2.1. General framework

We begin by recalling the technique of control variates in classical Monte Carlo (MC) integration [8]: suppose X is a ran-
dom variable with probability density pX , and we want to estimate its expected value X ¼ E½X� ¼

R1
�1 x � pXðxÞdx. The standard

Monte Carlo estimator of X is
2 Ext
bXn ¼
1
n

Xn

k¼1

Xk; ð1Þ
where X1;X2; . . . are independent samples from the distribution pX . The variance of the estimator is Var½bXn� ¼ Var½X�=n. It is
not generally possible to improve the c=n scaling; more accurate estimates are usually obtained by reducing the variance of
the estimand.

A control variate for X is a random variable Y whose expected value Y ¼ E½Y � is known and is correlated with X. One can
estimate X using the control variate estimator
bXCV ;a;n ¼
1
n

Xn

k¼1

½Xk þ a � ðY � YkÞ�; ð2Þ
where ðXk;YkÞ; k ¼ 1;2; . . . are samples from the joint distribution of X and Y, and a is an adjustable parameter. Optimizing
Var½bXCV ;a;n� over a gives an optimal control variate estimator of X with variance
1
n

Var½X� � ð1� q2
XYÞ;
where qXY is the correlation coefficient CovðX;YÞ=ðVar½X� � Var½Y�Þ1=2. In the special case a ¼ 1, Eq. (2) simply corrects the ini-
tial ‘‘guess” Y with an estimate of X � Y .

Consider now Markov chain Monte Carlo, where the samples are not independent, but are successive states of a Markov
process. For concreteness, let Xt be a time-homogeneous continuous-time Markov process with finite state space2 X. The
dynamics of Xt are completely specified by the transition rates Rðx0jxÞ, which tell us the rate at which Xt jumps from state x
to state x0, i.e., ProbðXtþDt ¼ x0jXt ¼ xÞ ¼ Rðx0jxÞ � Dt þ OðDt2Þ. We assume that the process Xt has a unique steady-state probability
distribution P, so that

P
x0Rðxjx0ÞPðx0Þ ¼

P
x0Rðx0jxÞPðxÞ.

Given an observable / : X! R, one can obtain a direct estimate of EX ½/� ¼
P

x2X/ðxÞ � PðxÞ by simulating the process Xt for
t 2 ½0; T� and applying the simple estimator
/̂T ¼
1
T

Z T

0
/ðXtÞdt: ð3Þ
This converges almost surely to EX ½/� as T !1. The variance of /̂T is given by the Kubo variance formula [1]
Var½/� � s
T

þ Oð1=T2Þ; ð4Þ
where Var½/� is the variance of the observable / with respect to P. The constant s is the integrated autocorrelation time
s ¼
Z 1

�1
qðtÞdt;
where qðtÞ ¼ CðtÞ=Cð0Þ is the time-autocorrelation function of /ðXtÞ, and
CðtÞ ¼ lim
t0!1

Covð/ðXtþt0Þ;/ðXt0 ÞÞ:
Note that s depends on both the observable / and the Markov process Xt .
ending our ideas to more general settings is straightforward. See for instance Section 3.2.
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As in the case of MC integration, it is not generally possible to improve the c=T scaling in Eq. (4). Variance reduction
schemes typically aim to reduce either the autocorrelation time s or the variance Cð0Þ of the estimand.

To extend the notion of control variates to this setting, one looks for a second Markov process Yt which is correlated to the
process of interest Xt [17,19,22]. The notion of correlated processes can be made precise by Markov couplings [16]: if Xt and Yt

are Markov processes with respective transition rates RX and RY , a Markov coupling of Xt and Yt is a specification of joint
transition rates RXYððx0; y0Þjðx; yÞÞ for transitions from ðXt ;YtÞ ¼ ðx; yÞ to ðXt; YtÞ ¼ ðx0; y0Þ, so that
3 For
optimal
X
y0

RXYððx0; y0Þjðx; yÞÞ ¼ RXðx0jxÞ for all y; x; x0; andX
x0

RXYððx0; y0Þjðx; yÞÞ ¼ RYðy0jyÞ for all x; y; y0:
ð5Þ
In other words, a Markov coupling of Xt and Yt is a Markov process on the product space X�X that gives a realization of Xt

when projected onto the first component, and likewise gives Yt when projected onto the second.
Suppose a process Yt can be found such that the expectation EY ½/�with respect to the stationary distribution Q of Yt can be

computed easily. We define the coupling control variate estimator by
/̂couple;a ¼
1
T

Z T

0
½/ðXtÞ þ a � ðEY ½/� � /ðYtÞÞ�dt: ð6Þ
The process Yt is the coupling control variate. It is possible to estimate a nearly optimal a using the Kubo variance formula (4),
but for simplicity we will always set a ¼ 1 in this paper.3 In order for the coupling control variate to be effective with this
choice of a;/ðYtÞ � /ðXtÞ should have small variance, i.e., the states Xt and Yt should remain as close to each other as possible.

2.2. The coupling control variate algorithm

Now, suppose we are interested in computing EX ½/� for a Markov process Xt with transition rates RXðx0jxÞ. Suppose further
that the steady-state distribution P is not known, but that an approximate steady-state distribution Q is available. Our aim is
to construct a coupled process ðXt; YtÞ with transition rates RXYððx0; y0Þjðx; yÞÞ so that

(i) The marginal Xt has transition rates RX , and therefore steady-state distribution P.
(ii) The marginal Yt has steady-state distribution Q.

(iii) Xt and Yt remain as close as possible given constraints (i) and (ii).

We show here how the coupling RXYððx0; y0Þjðx; yÞÞ can be constructed from a coupling RXX of two realizations of RX pro-
cesses. Such couplings are available in many situations; see Section 2.3. The basic idea is to apply the Metropolis-Hastings
algorithm using the second component of RXX as proposal and the distribution Q as the target distribution. The result is a
process Yt satisfying the detailed balance condition with respect to Q:
Qðy0Þ � RYðyjy0Þ ¼ QðyÞ � RYðy0jyÞ: ð7Þ
Thus, the stationary distribution of Yt is Q. This is a straightforward generalization of the detailed balance condition for dis-
crete time Markov chains; see, e.g., [12,20].

More precisely, recall that one way to simulate continuous-time finite-state Markov processes is as follows (sometimes
known as the Gillespie algorithm [5]): let RðxÞ ¼

P
x0–xRðx0jxÞ be the total exit rate from a state x 2 X. Let Tn be the times at

which the system jumps to the next state, and let XðnÞ ¼ XTnþ be the state of the system after each jump. If XðnÞ ¼ x, we set
an exponential clock of mean 1=RðxÞ. When the clock rings, we choose a new state x0 with probability Pðx0jxÞ ¼ Rðx0 jxÞ=RðxÞ
and set Xðnþ 1Þ ¼ x0. Note that Xt ¼ XðnÞ for Tn 6 t < Tnþ1.

The following simple algorithm generates one step of a coupled process ðXt ;YtÞ satisfying conditions (i)–(iii) above:

Algorithm. Let State ¼ ðx; yÞ be the current state of the joint process ðXt ;YtÞ. With rate RXXðx0; y0jx; yÞ, set Proposal ¼ ðx0; y0Þ.
Compute
Z ¼ Qðy0Þ � RXðyjy0Þ
QðyÞ � RXðy0jyÞ

: ð8Þ
With probability minðZ;1Þ, we accept Proposal and set NewState to ðx ; y Þ.
With probability 1�minðZ;1Þ, we reject Proposal and set NewState to ðx0; yÞ.
0 0

It is easy to check that the coupled process ðXt ;YtÞ generated by this algorithm satisfies Eq. (7). Thus, the estimator (6),
when applied to ðXt ;YtÞ, is always consistent in that /̂couple;T ! EY ½/� as T !1. Note, however, that whether the variance of
the models studied in this paper, it is expected that the optimal a will be � 1. In more general situations, it is important (and not difficult) to estimate an
a.



7130 J.B. Goodman, K.K. Lin / Journal of Computational Physics 228 (2009) 7127–7136
the coupling control variate estimator is lower than that of the simple estimator (3) depends on the coupling RXX and the
approximate distribution Q.

Remark. We note that when computing the expectation of static observables using this algorithm for continuous-time
Markov chains, one can reduce variance a little bit more by replacing the time intervals Tnþ1 � Tn by the mean 1=RðXðnÞÞ.
2.3. Some practical considerations

2.3.1. Approximate stationary distribution
The choice of Q is problem-dependent. In the nonequilibrium models discussed in Section 3, as in many other physical

situations, perturbative analysis of the relevant master equation often gives good candidates for Q. Note that because the
coupling estimator is always consistent, it is not necessary to know a priori how good an approximation Q is to the true sta-
tionary distribution, so that one can take advantage of uncontrolled approximations. However, the degree of variance reduc-
tion depends on the distribution Q and the coupling RXX .

To choose the distribution Q, one should follow these criteria:

(i) The expected value EQ ½/� should be easy to compute. This is necessary in order to apply the coupling control variate
estimator (6).

(ii) The distribution Q should be ‘‘close enough” to the true stationary distribution PX that the rejection rate is low. We
may then expect Yt to remain close to Xt , so that the coupling control variate estimator may have low variance.

2.3.2. Constructing couplings
How do we obtain a coupling RXX to start with? As mentioned earlier, constructing Markov couplings is not always

straightforward. However, couplings have long been used as a theoretical tool for studying the ergodic properties of Markov
processes, and ‘‘good” couplings have been found for a broad range of stochastic models [16]. In many (though not all) cases,
it suffices to simply use the same sequence of random numbers to couple two Markov processes. Examples include stochastic
differential equations that are contractive in the sense that their largest Lyapunov exponent is negative [13] and the models
in Section 3.

Note that if one uses the same sequence of random numbers to simulate two copies of a Markov process, and if the two
copies start in the same state, then one would obtain two identical sample paths. The main issue in constructing couplings is
whether two chains starting from different states will converge.

2.3.3. Factors affecting scaling of errors
The variance of the coupling control variate estimate is
VarðbAcoupleÞ ¼
Var½/ðXÞ � /ðYÞ� � scouple

T
þ Oð1=T2Þ; ð9Þ
where scouple is here the integrated autocorrelation time of /ðXtÞ � /ðYtÞ, and Var½/ðXÞ � /ðYÞ� is the variance of the random
variable /ðXÞ � /ðYÞwith respect to the stationary distribution of the coupled process on the product space X�X. Note that
if the coupling is effective in keeping /ðXtÞ � /ðYtÞ small, then the variance in Eq. (9) will be small. However, when a pro-
posed move is rejected by our algorithm, the process Yt ‘‘stands still.” The process Yt (and hence /ðXtÞ � /ðYtÞ) may therefore
have a slower correlation time than Xt . That is, the amount by which the variance of the estimator is reduced may reflect
competition between lower variance and larger correlation time.

2.3.4. Overhead and running time
Another practical consideration is the complexity of Q and the coupling RXX: a ‘‘good” coupling that is computationally

expensive to implement may not, in the end, be worth the effort. Couplings that are easy to implement, for example simply
using the same sequence of random numbers, have a distinct advantage in this regard.
3. Nonequilibrium transport processes

3.1. Symmetric simple exclusion process

The first model we consider is the symmetric simple exclusion process (SSEP) in one space dimension [14]. This is a stochas-
tic lattice gas model of a linear medium with a reservoir placed at each end. The two reservoirs are typically maintained at
different densities, so that there is a net flow of particles through the medium. More precisely, the domain is a linear chain of
N sites, with each site holding at most one particle at any given time. Thus, the state of the system r 2 X can be thought of as
a binary string of length N, with jXj ¼ 2N . The dynamics are as follows: each particle carries an exponential clock of rate 1.
When the clock rings, the particle will try to jump to a neighboring site, choosing left and right with equal probability; the
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Fig. 1. The symmetric simple exclusion process.
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particle does not move if the target site is occupied. The left reservoir will place a particle in site 1, when it is unoccupied, at
rate a; and remove a particle from site 1, when it is occupied, at rate b. The right reservoir acts on site N in an analogous
manner, at rates d and c, respectively (see Fig. 1). Note that the total particle number is conserved, except when the reser-
voirs inject or remove a particle.

We begin by summarizing some known results on the SSEP; see [4,14] for details. It is easy to show that the SSEP has a
unique stationary distribution PN . Much is known about PN . In particular, various probabilities can be calculated exactly
using the ‘‘matrix method.” The SSEP thus provides a convenient test case for illustrating coupling control variates in non-
equilibrium transport models. A central motivation for studying models like the SSEP is to understand how macroscopic
transport processes arise from microscopic dynamics. One quantity of interest is the macroscopic density profile
q : ð0;1Þ ! R, defined by
qðxÞ ¼ lim
N!1

EN r½xN�
� �

; x 2 ð0;1Þ; ð10Þ
where EN½�� denotes expectation with respect to PN . Another quantity of great interest is the correlation between distant sites
(see below).

Specifically, let qL ¼ a=ðaþ bÞ and qR ¼ d=ðdþ cÞ. These quantities can be thought of as the particle densities of the res-
ervoirs. When qL ¼ qR ¼ q0, the SSEP satisfies detailed balance, and it is easy to check that the equilibrium distribution is
PNðrÞ ¼
YN

i¼1

pðriÞ; ð11Þ
where pð1Þ ¼ q0 and pð0Þ ¼ 1� q0. The occupation numbers become IID Bernoulli random variables. Note that this means
qðxÞ � q0.

If qL – qR, it can be shown that
qðxÞ ¼ qL � ð1� xÞ þ qR � x: ð12Þ
The non-constant profile reflects the presence of a nonzero current. The stationary distribution PN is no longer a product: the
covariance CovNðri;rjÞ is nonzero for i – j. The dynamics no longer satisfies detailed balance.

The large-N scaling of spatial correlations is also known. Fix x; y, so that 0 < x < y < 1. Then [4]
lim
N!1

N � CovN r½xN�;r½yN�
� �

¼ �ðqR � qLÞ
2 � xð1� yÞ: ð13Þ
Thus, for N � 1 and i; j not too near the end points of (0,1), we have CovNðri;rjÞ ¼ Oð1=NÞ. We note that this 1=N scaling is
not unique to the SSEP—it has been observed in other settings as well [2,4,15,21]. The correlation is thus quite weak for large
N. This means that computing correlations in nonequilibrium transport models like the SSEP presents numerical difficulties:
when the covariances are Oð1=NÞ and the occupation numbers ri themselves remain Oð1Þ, a direct computation entails sub-
tracting two quantities of like magnitude to estimate a much smaller number.

To apply coupling control variates to this problem, we need an approximate stationary distribution Q and a coupling. For
nonequilibrium transport models like the SSEP, a choice of Q is suggested by the notion of local thermal equilibrium (LTE): in
physical terms, even though the system cannot be in thermal equilibrium because the two ends are in contact with reser-
voirs at different densities, for large N it is generally expected that small parts of the medium will reach approximate local
thermal equilibrium [3]. For the SSEP, it has been shown that LTE holds in the following sense: fix x 2 ð0;1Þ and a positive
integer k. Then, as N !1with x and k fixed, the occupation numbers r½xN�;r½xN�þ1; . . . ;r½xN�þk converge in distribution to inde-
pendent, identically-distributed Bernoulli random variables with Probðr ¼ 1Þ ¼ qðxÞ, where q is the linear profile given in
Eq. (12). Heuristically, this tells us that even though the system cannot attain a global thermal equilibrium when qL–qR,
it does approach local equilibrium when N � 1. It also suggests that we use as our approximate stationary distribution
Q NðrÞ ¼
YN
i¼1

qiðriÞ; ð14Þ
where qið1Þ ¼ qðxiÞ; qið0Þ ¼ 1� qðxiÞ, and xi ¼ i
Nþ1. The distribution Q N can be thought of as a local equilibrium distribution, in

which the sites are occupied independently with probability qðxiÞ. The LTE property suggests that QN may become a better
approximation of PN as N !1, at least locally.

The other ingredient we need is RXX , a coupling of the SSEP to itself, so that we can use the algorithm in Section 2.2 to
construct a coupling control variate. This is straightforward [14]: given two copies of SSEP, we simply carry out the same
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moves in both copies whenever possible, and move independently when not. More precisely, let MovesðrÞ denote the set of
all available moves for r, where a move means a particle jumping from site i to site j (for all i; j with ji� jj ¼ 1) or changing
the occupation number of site 1 or site N. To each move in MovesðrÞ [Movesð~rÞ, we attach an independent exponential
clock of the appropriate rate—1/2 for jumps, a for injection by the left reservoir, etc. When a clock goes off, check if the cor-
responding move is in MovesðrÞ \Movesð~rÞ, i.e., whether r and ~r can make the same move. If so, update both r and ~r
accordingly. If the move is in MovesðrÞ nMovesð~rÞ, i.e., if only r can make the move, then update only r. Similarly for moves
in Movesð~rÞ nMovesðrÞ. This algorithm couples two copies of the SSEP process.

We can now apply the Metropolis-Hastings construction from Section 2.2. This yields a coupling control variate for the
SSEP, with Metropolis ratios Z given by the following table:
Transition from site i to j, ji� jj ¼ 1
500400300200100

N

1.25

1

0.75

0.5
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0

E
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E
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or
 r
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(a)
Fig. 2. The SSEP error ratio vs. system size N. In (a), we show the error ratio eN (
circles), and x ¼ 0:8 (squares). In (b), we show the error ratio for the near-neigh
r½xN� � r½yN� with ðx; yÞ ¼ ð0:4;0:7Þ (open circles) and ðx; yÞ ¼ ð0:2; 0:9Þ (squares)
parameters are a ¼ 2;b ¼ 0:1; d ¼ 0:3, and c ¼ 1.
Zij ¼ 1�qi
qi
� qj

1�qj
400300200100

N

1.25

1

0.75

0.5

0.25

0

(b)
see text) for the estimated density at x ¼ 0:3 (solid
bor product r½xN� � r½xN�þ1 with x ¼ 0:5 (solid discs),

. The errors are estimated using batched means e
Injection (removal) by left reservoir
 ZL;in ¼ q1
1�q1
� ba
 ðZL;out ¼ 1=ZL;inÞ
Injection (removal) by right reservoir
 ZR;in ¼ qn
1�qn
� cd
 ðZR;out ¼ 1=ZR;inÞ
Note that the Z ratios involve only local quantities because the distribution Q N has product form. Note also that the rejec-
tion probabilities are quite small when N � 1: since qi � qj ¼ Oð1=NÞ, the Metropolis-Hastings ratios Z above are 1þ Oð1=NÞ
(as long as 0 < qL;qR < 1). Thus, the Metropolis-Hastings algorithm rejects fewer and fewer samples as N !1.

3.1.1. Numerical results
To assess the effectiveness of the coupling control variate, we use a metric we call the error ratio
eN½/� ¼
VarN ½/̂couple�

VarN½/̂�

 !1=2

ð15Þ
for a given observable /. The error ratio measures the amount by which the estimator /̂couple improves the accuracy of the
estimate.

Fig. 2(a) shows the error ratio e½r½xN�� for the occupation numbers at a few selected locations along the chain, specifically
x 2 f0:3;0:5;0:8g. The error ratio decreases with increasing N. The improvement with N is expected, since the local equilib-
rium distribution QN is expected to be a better approximation of the true stationary distribution PN when N is big. Indeed, our
data show that the rejection rate of the Metropolis-Hastings step decreases as N increases. In Fig. 2(b), the error ratio for the
products r½xN�r½yN� are shown for pairs ðx; yÞ at distances ranging from ‘‘infinitesimal” (nearest neighbors) to jx� yj ¼ 0:7.
These results show that coupling control variates can effectively improve the accuracy of calculations involving hard-to-esti-
mate quantities like spatial correlations.

Fig. 3 shows the error ratios for the occupation numbers r½xN� as functions of spatial location x 2 ð0;1Þ, for
N 2 f50;100;500g. As can be seen, the error ratio has a strong dependence on spatial location, nearly vanishing at the bound-
aries but quickly attaining a near-linear profile in the interior of the domain. The figure show that some degrees of freedom
couple better than others, and that sites in a ‘‘boundary layer” near the reservoirs couple especially well. An explanation is
500

discs), x ¼ 0:5 (open
and for the products
stimators [20]. The
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Fig. 3. The SSEP error ratio for the occupation number r½xN� as a function of location x. The curves are, from top to bottom, N ¼ 50;100;500. The parameters
are a ¼ 2; b ¼ 0:1; d ¼ 0:3, and c ¼ 1.
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that in order for the two processes to couple at, say, site 1, we need only that their occupation numbers at site 1 agree,
whereas for coupled moves to occur in the interior of the system requires that the occupation numbers of two neighboring
sites agree. In any case, despite this dependence on spatial location, overall the coupling control variate has improved the
accuracy of MCMC estimates by a factor of J 40% for N � 500.

We note that the coupling control variate estimator can be implemented with overhead of less than twice the running
time of a single SSEP simulation. If we run two independent copies of SSEP simulations and average the results, the standard
error of the resulting estimate will decrease by a factor of 1=

ffiffiffi
2
p
� 0:7, i.e., a 30% gain. We see that for single-site density esti-

mates, the coupling control variate offers a noticeable improvement over simply running more copies of the simulation, and
performs significantly better for two-site estimates.

The Kubo formula (4) tells us that when the simulation time T is sufficiently large, the error ratio (15) can be written as a
product of two factors:
Fig. 4.
x ¼ 0:3
comput
show t
comput
c ¼ 1.
eN ½/� �
Var½/ðrÞ � /ðgÞ�

Var½/ðrÞ�

� �1=2

� scouple

s

	 
1=2
¼ evar;N ½/� � es;N½/�: ð16Þ
The reasoning in Section 2.2 suggests that the error ratio eN reflects both the gain in the first factor evar;N by reducing vari-
ance, and possible loss due to an increase in the second factor es;N , by increasing correlation times. To assess the situation, we
have plotted evar;N½/�, with / ¼ rxN for a few locations x, in Fig. 4(a). This curve should coincide with the plot of eN in Fig. 2(a)
if the correlation time of the SSEP were equal to that of the coupling control variate. Instead, we find that evar;N < eN . Fig. 4(b)
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The variance and correlation time components of the error ratio for the SSEP. In (a), we show the factor evar;N , as defined in Eq. (16), for / ¼ r½xN� with
(solid discs), x ¼ 0:5 (open circles), and x ¼ 0:8 (squares). In (b), we show the corresponding ratios of correlation times. Correlation times are
ed by checking numerically that Kubo scaling (4) is in effect (batched means estimates of the estimator error for integration times T 2 ½105;107�
hat the mean squared error 	 T�1=2). Then, the correlation time is ‘‘reverse-engineered” using the Kubo formula, and spot-checked by direct
ation of time correlation functions. Variances are computed by time averaging for 108 time units. The parameters are a ¼ 2; b ¼ 0:1; d ¼ 0:3, and
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shows the ratio of integrated autocorrelation times. As can be seen, the coupling control variate may increase correlation
times at the same time that it reduces variance. Here, the reduced variance wins over the increased correlation time.

3.2. KMP model

The second model we consider is the Kipnis–Marchioro–Presutti (KMP) model [11]. This is a stochastic idealization of a
chain of N coupled harmonic oscillators placed at the vertices of a regular lattice. We think of the ith oscillator as having
energy ei, given by a nonnegative real number, so that the state space is X ¼ ½0;1ÞN . Note that unlike the SSEP, X is uncount-
able. At sites 0 and N þ 1, we place ‘‘heat baths” with temperature TL and TR, respectively. There are thus N þ 1 bonds in the
system, linking site i with i
 1 for i ¼ 1; . . . ;N. Associated with each bond is an independent exponential clock of rate 1. If the
clock for the bond ði; iþ 1Þ rings and 1 6 i 6 N � 1, then the energies of oscillators i and iþ 1 are pooled together and redis-
tributed randomly, i.e., eþi ¼ U � ðe�i þ e�iþ1Þ and eþiþ1 ¼ ð1� UÞ � e�i þ e�iþ1

� �
, where U is a uniform random variable on ½0;1� inde-

pendent of everything else, eþ denotes energy after the redistribution, and e� denotes the prior energy. If the clock for the
bond i ¼ 0 rings, e1 jumps to a new energy level u with probability density bLe�bLu; bL ¼ 1=TL. Similarly for the bond ðN;N þ 1Þ,
but with parameter bR ¼ 1=TR. Notice that the dynamics conserves energy except at sites 1 and N, just as the interior dynam-
ics of the SSEP conserves particle number.

The KMP process provide a simple microscopic model of heat conduction. When TL ¼ TR ¼ T0, the system attains thermal
equilibrium: the dynamics satisfies detailed balance, the stationary distribution PN is a product of Gibbs distributions with
densities b0e�b0eðb0 ¼ 1=T0Þ, and the temperature at all sites is equal to T0. When TL–TR, we have a linear temperature profile
Fig. 5.
before
TðxÞ ¼ TL � ð1� xÞ þ TR � x; x 2 ð0;1Þ; ð17Þ
where TðxÞ ¼ limN!1EN½e½xn��. This non-constant profile reflects the flow of a nonzero energy current through the system. The
spatial correlations have a similar scaling as the SSEP [2]: the limit
cðx; yÞ ¼ lim
N!1

NCovN e½xN�; e½yN�
� �
exists, and
cðx; yÞ / ðTR � TLÞ2 � xð1� yÞ; 0 < x < y < 1:
Like the SSEP, CovNðe½xN�; e½yN�Þ ¼ Oð1=NÞ. Thus, one encounters similar difficulties when estimating spatial correlations
numerically.

It has been shown that the KMP model attains LTE as N !1, i.e. k-site marginals converge to a product of Gibbs distri-
butions, with a local temperature TðxÞ given by the linear profile above. This suggests that we use
QNðeÞ ¼
YN

i¼1

bie
�biei ; ð18Þ
where bi ¼ 1=TðxiÞ, as approximate stationary distribution. A simple coupling of the KMP process to itself is also available:
given two copies of the KMP process, we make the same bonds ‘‘ring” at the same time. For interior bonds, we use the same
uniform random numbers U to split energy in both copies; for heat baths, we set the boundary sites to the same new energy.
The coupling is illustrated in Fig. 5: it entails having the ~e process use the same ‘‘randomness” as the e process to redistribute
energy between nearby sites.

One difference from the SSEP is that the KMP model has an uncountable state space, so the algorithm described in Section
2 requires slight modification. This is straightforward for Markov jump processes with transition densities: one can simply
replace the ratio of transition rate coefficients RX in Eq. (8) with the ratio of the corresponding densities. The KMP process
does not only have an uncountable state space, though—it also has singular transition rate measures (this is a consequence of
energy conservation). Nonetheless, it can be checked that the ratios are well-defined in this case, and yield the following
Metropolis ratios:
Illustration of the KMP coupling. Because the interaction conserves energy, the point ðXi;Xiþ1Þ is constrained to lie on the line Xi þ Xiþ1 ¼ const both
and after the interaction.
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Interaction resulting in ðei; ejÞ# ðe0i; e0jÞ; ji� jj ¼ 1
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Fig. 6. The KMP error ratio as a function of system size N. In (a), we show the error ratio for the estimated
(open circles), and x ¼ 0:8 (squares) as functions of N. In (b), we show the error ratio for the near-neighbor pro
for the products e½xN� � e½yN� with ðx; yÞ ¼ ð0:4; 0:7Þ (open circles) and ðx; yÞ ¼ ð0:2;0:9Þ (squares). The errors are e
parameters are TL ¼ 10 and TR ¼ 100.
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Fig. 7. The variance and correlation time components of the error ratio for the KMP process. In (a), we sho
/ ¼ e½xN� for x ¼ 0:3 (solid discs), x ¼ 0:5 (open circles), and x ¼ 0:8 (squares). In (b), we show the correspon
times. The parameters are TL ¼ 10 and TR ¼ 100.
Zij ¼ exp ½biei þ bjej� � bie0i þ bje0j
h i	 

Left heat bath setting e1#e01
 ZL ¼ expððbL � b1Þ � ðe01 � e1ÞÞ
Right heat bath setting en#e0n
 ZR ¼ expððbR � bnÞ � ðe0n � enÞÞ
Applying the algorithm in Section 2.2 with these ratios yields a coupling control variate which preserves the local equi-
librium distribution QN .

3.2.1. Numerical results
Fig. 6(a) shows the error ratios for various sites in the KMP model. As is the case for the SSEP, the coupling control variate

significantly reduces the variance of the estimator. In contrast to the SSEP, the amount by which the error is reduced depends
more strongly on location, ranging from 20% to 60%. Fig. 7(b) shows the error ratios for the products e½xN� � e½yN� for pairs ðx; yÞ
located at various distances. These ratios are much more consistent and tend to � 40% for the range of N tested.

Fig. 7(a) shows the corresponding factor evar;N . As in the case of the SSEP, evar;N is strictly smaller than the error ratio eN; at
the same time, the ratio es;N of correlation times increase; see Fig. 7(b). Thus, Metropolis rejections can have a dramatic effect
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on the correlation time of the coupling control variate. Despite that, the overall performance of the coupling control variate
estimator is quite good: even at its worst, the accuracy has been improved by 40%.

4. Conclusion

We have shown that Markov couplings, when available, can be used effectively to improve the accuracy of Markov chain
Monte Carlo calculations. This method useful in situations where the stationary distribution is not known explicitly, as in the
case of nonequilibrium transport models. As shown by the examples considered in this paper, good candidates for approx-
imate stationary distribution can be found based on physical reasoning, and when an effective coupling is available for the
Markov process at hand, one can construct an effective coupling control variate.

The numerical results suggest various directions for improvement. In particular, the observation that coupling control
variate has larger correlation times than the original process suggests that one try to ‘‘trade” variance for correlation time.
However, simple ideas like resampling the energy of random sites at random times, as in heat bath/ partial resampling, may
very well increase variance more than it decreases correlation time, resulting in a net gain of error. A related issue is the
dependence of the estimator error ratio on observables: in many applications, it is desirable to be able to optimize the error
ratio only for observables of interest. (One does not expect to be able to have small error ratios for all observables unless the
approximate and true stationary distributions are close in the total variation norm.)

Finally, we mention that it might be possible to use related coupling methods for sensitivity analysis. If the Markov pro-
cess depends on parameters h, then the observable / in Eq. (6) becomes /h and the sensitivities are derivatives of /h with
respect to h. Sensitivities are used, for example, in numerical computation of optimal stochastic controls in situations where
the curse of dimensionality makes dynamic programming impractical. When there is a known formula for the stationary dis-
tribution Ph, two common methods for evaluating sensitivities are the common random variables (or same paths) method4 and
the likelihood ratio (or score function) methods. Glynn [7] and others have generalizations of the likelihood ratio method to sit-
uations where T is known but not P. It also might be helpful to have such a generalization of the same paths method.
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